Journal of Organometallic Chemistry, 367 (1989) 161–174 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09711

Übergangsmetallkomplexe mit Schwefelliganden

XLIII *. UV-Photolyse der Thiolat-amin-Komplexe $[Ru(CO)_2(bmae)]$ und $[Ru(CO)_2({}^{bu}bmae)]$ $(bmae^{2^-} = 1,2$ -Bis(2-mercapto-anilino)ethan(-2); ${}^{bu}bmae^{2^-}$ = 1,2-Bis(2-mercapto-3,5-di- ${}^{t}butyl$ -anilino)ethan(-2))

Dieter Sellmann *, Olaf Käppler und Falk Knoch

Institut für Anorganische Chemie der Universität, Egerlandstr. 1, D-8520 Erlangen (BR Deutschland) (Eingegangen den 30, November 1988)

Abstract

UV-photolysis of the thermally stable thiolate amine complexes $[Ru(CO)_2(bmae)]$ (1) and $[Ru(CO)_2(^{bu}bmae)]$ (2) leads to elimination of CO. In presence of L = PPh₃, NH₃, N₂H₄, and NO the monocarbonyl complexes $[Ru(CO)(PPh_3)(^{bu}bmae)]$ (3), $[Ru(CO)(NH_3)(^{bu}bmae)]$ (7), $[Ru(CO)(NH_3)(bmae)]$ (8), $[Ru(CO)(N_2H_4)(bmae)]$ (10) and the binuclear $[Ru(NO)(bmae)]_2$ (11) are obtained. In absence of L the binuclear complexes $[Ru(CO)(^{bu}bmae)]_2$ (9) and $[Ru(CO)(bmae)]_2$ (6) having six coordinate Ru centers are formed. Complete CO elimination from 2 yields binuclear $[Ru(^{bu}bmae)]_2$ (5) which was characterized by an X-ray diffraction study. 5 contains distorted planar $[Ru(^{bu}bmae)]$ units which are associated via two Ru–S–Ru bridges, such that the Ru centers each have a distorted square-pyramidal configuration and a vacant coordination site. In all the main, the coordinatively unsaturated [Ru(CO)(bmae)] fragment and $[Ru(CO)(^{bu}bmae)]$, which is stabilized by the π -donor properties of the thiolate atoms, appear in all reactions.

Zusammenfassung

UV-Photolyse der thermisch stabilen Thiolat-amin-Komplexe $[Ru(CO)_2(bmae)]$ (1) und $[Ru(CO)_2(^{bu}bmae)]$ (2) führt zur Abspaltung von CO. In Gegenwart von L = PPh₃, NH₃, N₂H₄ und NO werden die Monocarbonylkomplexe $[Ru(CO)(PPh_3)(^{bu}bmae)]$ (3), $[Ru(CO)(NH_3)(^{bu}bmae)]$ (7), $[Ru(CO)(NH_3)(bmae)]$ (8) und $[Ru(CO)(N_2H_4)(bmae)]$ (10), sowie das zweikernige $[Ru(NO)(bmae)]_2$ (11)

^{*} XLII. Mitteilung s. Ref. 1.

erhalten; bei Abwesenheit von L bilden sich die zweikernigen Komplexe $[Ru(CO)(bmae)]_2$ (9) und $[Ru(CO)({}^{bu}bmae)]_2$ (6) in denen die Ru-Zentren ebenfalls 6-fach koordiniert sind. Die vollständige CO-Abspaltung von 2 ergibt das zweikernige $[Ru({}^{bu}bmae)]_2$ (5) das röntgenstrukturanalytisch charakterisiert wurde. Die $[Ru({}^{bu}bmae)]$ -Einheiten mit verzerrt planar koordinierten Ru-Zentren sind über zwei Ru-S-Ru-Brücken miteinander verknüpft, sodaß die Ru-Zentren eine verzerrt quadratisch pyramidale Konfiguration und jeweils eine freie Koordinationsstelle aufweisen. Bei allen Reaktionen tritt primär das koordinativ ungesättigte [Ru(CO)(bmae)]- bzw. $[Ru(CO)({}^{bu}bmae)]$ -Fragment auf, das durch die π -Donatoreigenschaften der Thiolatatome stabilisiert wird.

Einleitung

Die Übergangsmetalle in den aktiven Zentren zahlreicher Oxidoreduktasen, von Oxotransferasen wie Sulfitoxidase oder Xanthinoxidase über Hydrogenasen bis hin zu Nitrogenase werden überwiegend von Schwefelliganden koordiniert [2]; EXAFS-Untersuchungen weisen darauf hin, daß in Einzelfällen die Koordinationssphären von Amin- und Oxoliganden ergänzt werden [3].

Auf der Suche nach Modellverbindungen für die aktiven Zentren dieser Enzyme und um die grundlegende Frage zu klären, welche spezifischen Eigenschaften einem Metall durch Schwefelliganden aufgeprägt werden, haben wir in den vergangenen Jahren neue Schwefelliganden synthetisiert und ihre Koordinationschemie untersucht. Die Stabilisierung extrem instabiler Teilchen wie Diazen in $[\mu$ -N₂H₂{Ru(PPh₃)(dttd)}₂] (dttd²⁻ = 2,3;8,9-Dibenzo-1,4,7,10-tetrathiadecan(-2)) [4], oder koordinativ und elektronisch ungesättigter Metallzentren wie in [Cr(CO)₃(S₂C₆H₄)]²⁻ [5], die Kopplung von Substitutions- und Additionsreaktionen an den [RuS₄]-Zentren von [Ru(PPh₃)₂(dttd)] [6] oder die Desoxygenierung von NO in [Mo(NO)₂(dttd)] [7] durch Phosphine sind Beispiele für die spezifischen Eigenschaften, die mit Metall-Schwefel-Zentren verknüpft sind.

Bei Reduktions- oder UV-Bestrahlungsreaktionen von Mo-, Fe- und Ru-dttd-Komplexen wird verschiedentlich eine Abspaltung der C_2H_4 -Brücke des dttd-Liganden beobachtet [8]. Eine solche unerwünschte C_2H_4 -Abspaltung tritt bei den isoelektronischen bmae-Komplexen (bmae²⁻ = 1,2-Bis(2-mercapto-anilino)ethan-(-2)) wie z.B. [Ru(CO)₂(bmae)] [9] und [Fe(CO)₂(bmae)] [10] nicht auf. Die im Vergleich zu den C-S-Bindungen des dttd-Liganden stabileren C-N-Bindungen des bmae-Liganden werden selbst durch starke Reduktionsmittel wie Na-Staub oder LiAlH₄ nicht angegriffen [11] Die NH-Funktionen des bmae-Liganden können jedoch Substitutionsreaktionen am Metallzentrum pH-abhängig werden lassen, wie für [Ru(PPh₃)₂(bmae)] gezeigt wurde. Dieser Komplex ist unter Normalbedingungen substitutionsinert, in Gegenwart starker Basen wird jedoch ein PPh₃-Ligand leicht durch andere Moleküle wie CO substituiert [12]. Viele der bmae-Komplexe

sind in den gebräuchlichen Lösungsmitteln so schwerlöslich, daß ein systematisches Studium ihrer Reaktivität erschwert oder unmöglich wurde. Aus diesem Grund haben wir auch die erheblich besser löslichen analogen Komplexe mit dem sterisch anspruchsvollen 'Butylderivat ^{bu}bmae²⁻ (= 1,2-Bis(2-mercapto-3,5-di-'butylanilino)ethan(-2)) synthetisiert [11]. Nachfolgend berichten wir über die Reaktionen der Ru-CO-Komplexe [Ru(CO)₂(bmae)] sowie [Ru(CO)₂(^{bu}bmae)].

Ergebnisse und Diskussion

UV-Photolyse von [Ru(CO)₂(^{bu}bmae)]

CO ist isoelektronisch zu N_2 und der stärkste Nitrogenasehemmer; es läßt sich daher bei der Suche nach Modellverbindungen für Nitrogenase als Testmolekül verwenden. Auch in $[Ru(CO)_2(bmae)]$ (1) und $[Ru(CO)_2(^{bu}bmae)]$ (2) ist es außerordentlich fest an das Ru-Zentrum gebunden, und die Ru-CO-Bindungen sind thermisch substitutionsinert. Wie bereits beschrieben, ist es jedoch möglich, in 1 einen CO-Liganden UV-photolytisch durch PPh₃ zu substituieren [9]. Die analoge Reaktion konnten wir jetzt mit 2 nach Gl. 1 beobachten.

Bei der IR-spektroskopischen Verfolgung der Reaktion beobachtet man eine langsame Abnahme der ν (CO)-Banden von 2 bei 2030 und 1965 cm⁻¹ und das Entstehen von zwei neuen ν (CO)-Banden bei 1940 und 1930 cm⁻¹; die Bande bei 1940 cm⁻¹ wird im Laufe der Reaktion wieder schwächer und nach etwa 80 min ist nur noch die Bande bei 1930 cm⁻¹ (Fig. 1) zu beobachten.

Aus der Reaktionslösung lassen sich $[Ru(CO)(PPh_3)(^{bu}bmae)]$ (3) und $[Ru(PPh_3)_2(^{bu}bmae)]$ (4) isolieren und vollständig charakterisieren (s. Tab. 1). Für das hellgelbe pulverige $[Ru(CO)(PPh_3)(^{bu}bmae)]$ charakteristisch sind die intensive $\nu(CO)$ -Bande bei 1945 cm⁻¹ und zwei schwache $\nu(NH)$ -Banden bei 3270 und 3290 cm⁻¹ im KBr-IR-Spektrum, sowie die vier Singuletts der vier magnetisch nichtäquivalenten 'Butylgruppen im ¹H-NMR-Spektrum. Aus der Zahl der 'Butylsignale folgt, daß 3 die in Gl. 1 angedeutete C_1 -Symmetrie besitzt.

 $[Ru(PPh_3)_2(^{bu}bmae)]$ (4) wurde durch Vergleich der spektroskopischen Daten mit dem aus $[Ru(PPh_3)_3Cl_2]$ und ^{bu}bmae-Li₂ erhaltenen $[Ru(PPh_3)_2(^{bu}bmae)]$ [11] identifiziert; es weist im ¹H-NMR-Spektrum nur zwei ^tButylsignale auf und muß daher C_2 -Symmetrie besitzen.

Wir vermuteten, daß die bei der Reaktion zwischenzeitlich beobachtete ν (CO)-Bande bei 1940 cm⁻¹ auf die Bildung eines intermediär gebildeten Monocarbonylkomplexes wie z.B. [Ru(CO)(^{bu}bmae)] oder [Ru(CO)(THF)(^{bu}bmae)] zurückzuführen war. Um einen solchen Komplex isolieren zu können und gleichzeitig genaueren Einblick in den Reaktionsverlauf zu erhalten, wurde die gelbe THF-Lösung von 2 unter Ausschluß anderer Liganden bestrahlt und nur N₂ eingeleitet, um abge-

Tabelle 1

Ausgewählte spektroskopische Daten der Ru-bmae- und Ru^{bu}bmae-Komplexe (¹³C-NMR-Daten sind bei den Synthesen angegeben)

Komplex (Farbe)	IR in KBr (cm ⁻¹)	¹ H-NMR (ppm) rel. TMS		MS [m/e]
$[Ru(CO)(PPh_3)(^{bu}bmae)] (3)$	1945s (CO)	1.15; 1.25; 1.45; 1.65	(s, ^t bu) ^a	EI 890
(heligelb)	3270w (NH) 3290w (NH)	2.204.30 5.45; 6.00 6.807.90	(m,C_2H_4) (m,NH) (m,C_6H_2 + PPh_3)	(<i>M</i> ⁺)
$[\operatorname{Ru}(^{\operatorname{bu}}\operatorname{bmae})]_2$ (5)	-	1.33; 1.53; 1.55: 1.79	(s, ^t bu) ^a	FI 1200
(schwarz)		2.80; 3.60; 4.02 5.50 5.60; 5.86;	(m,C_2H_4) (m,NH) (m,C_1H_1)	(<i>M</i> ⁺)
		7.62; 7.80	(11,06112)	
$[Ru(CO)(^{bu}bmae)]_2$ (6)	1915s (CO)	1.22; 1.27; 1.37; 1.76	(s, ^t bu) ^a	EI 1256
(orange)	3230w (NH) 3310w (NH)	3.33; 3.94 5.06; 6.42 6.53; 7.04; 7.15; 7.29	(m,C_2H_4) (m,NH) (s,C_6H_2)	(<i>M</i> ⁺)
[Ru(CO)(NH ₃)(^{bu} bmae)] (7) (hellgelb)	1910s (CO) 3210w (NH) 3290w (NH) 3350w (NH)	1.27; 1.70 2.60-4.00 5.40 6.80-7.30	$(s,^{t}bu)^{a}$ (m,C ₂ H ₄) (m,NH) (m,C ₆ H ₂)	FD 645 (<i>M</i> ⁺)
[Ru(CO)(NH ₃)(bmae)] (8) (weiß)	1925s (CO) 3200w (NH) 3240w (NH)	2.38 2.70-3.70 6.70-7.50	$(s, NH_3)^{c}$ (m, C ₂ H ₄) (m, C ₆ H ₂)	-
[Ru(CO)(bmae)] ₂ (9) (orange)	1915s (CO) 3130m (NH) 3200m (NH)	3.23; 4.05 7.48; 7.70 6.60-7.40	$(m,C_2H_4)^{b}$ (m,NH) (m,C_6H_4)	FD 808 (M ⁺)
$[Ru(CO)(N_2H_4)(bmae)]$ (10) (heligelb)	1930s (CO) 3160m (NH) 3290m (NH) 3270m (NH) 3330m (NH)	2.30-4.30 5.33; 7.66 6.60-7.40	(m,C ₂ H ₄) ^c (m,NH) (m,C ₆ H ₄)	EI 404 $(M^+ - N_2H_4)$
[Ru(NO)(bmae)] ₂ ·2 THF (11) (rot-braun)	1800s (NO) 3130w (NH)	3.20-4.50 1.82; 3.65 6.20-7.50 9.10	$(m,C_2H_4)^{b}$ (m,THF) (m,C_6H_4) (s,NH)	FD 812 (M ⁺)

^a In CDCl₃. ^b In DMF-d₇. ^c In DMSO-d₆. s: Singulett; m: Multiplett; EI: Elektronenstoßionisation; FD: Felddesorption.

spaltenes CO zu entfernen (Gl.2). Die geäußerte Vermutung ließ sich jedoch nicht erhärten, sondern als Endprodukt wurde $[Ru(^{bu}bmae)]_2$ isoliert.

$$2[\operatorname{Ru}(\operatorname{CO})_{2}(^{\operatorname{bu}}\operatorname{bmae})] \xrightarrow{+\operatorname{N}_{2}/h\nu/6 \operatorname{h}}_{-4\operatorname{CO}/\operatorname{THF}/10^{\circ} \operatorname{C}} [\operatorname{Ru}(^{\operatorname{bu}}\operatorname{bmae})]_{2}$$
(2)
(2) (5)

Fig. 1. ν (CO)-Bereich der IR-Spektren von (a) $2 + PPh_3$ in THF, (b) nach 15 min Bestrahlung, (c) nach 40 min Bestrahlung, (d) nach 80 min Bestrahlung.

Die Lösung verfärbte sich bei der Bestrahlung tiefrotbraun und im Verlauf der Reaktion ließen sich nach 2 h außer den Banden von 2 zwei weitere ν (CO)-Banden bei 1955 und 1920 cm⁻¹ beobachten. Diese Banden wurden bei weiterer Bestrahlung wieder schwächer und waren nach 6 h praktisch völlig verschwunden. Aus der Lösung wurde ein diamagnetischer Komplex in Form schwarzer Kristalle isoliert, die ausgezeichnet löslich in allen gebräuchlichen Lösungsmitteln wie MeOH, THF, CHCl₃, CH₂Cl₂ und sogar Pentan waren. Der Komplex enthielt keine CO-Gruppen mehr (IR), im EI-Massenspektrum traten neben den Fragmentionen des ^{bu}bmae-Liganden hauptsächlich zwei Peaks bei m/e = 600 für [Ru(^{bu}bmae)] und m/e =1200 für [Ru(^{bu}bmae)]₂ auf, und im ¹H-NMR-Spektrum wurden für die ^tButylgruppen vier scharfe Signale beobachtet (Tab. 1). Diese Befunde wiesen auf die Bildung des zweikernigen Komplexes [Ru(^{bu}bmae)]₂ (5) hin; er mußte ein Symmetrieelement aufweisen, was durch die Röntgenstrukturanalyse bestätigt werden konnte.

Röntgenstrukturanalyse von $[Ru(^{bu}bmae)]_2$ (5)

Die Elementarzelle von 5 enthält vier $[Ru(^{bu}bmae)]_2$ -Moleküle, die jeweils aus zwei kristallographisch äquivalenten $[Ru(^{bu}bmae)]$ -Einheiten aufgebaut sind, sodaß jedes $[Ru(^{bu}bmae)]_2$ -Molekül C_2 -Symmetrie besitzt. Figur 2 zeigt schematisch die Verknüpfung dieser Einheiten, in Fig. 3 ist die Struktur einer Molekülhälfte wiedergegeben. Wie aus Fig. 2 hervorgeht, ist in 5 jedes Ru-Zentrum verzerrt quadratisch pyramidal koordiniert. Die Grundfläche der Pyramide bilden jeweils zwei S- und N-Atome des ^{bu}bmae-Liganden der einen Molekülhälfte, die Spitze der Pyramide wird von einem S-Atom des ^{bu}bmae-Liganden der anderen Molekülhälfte besetzt. Insgesamt resultiert dabei ein rotationssymmetrisches Molekül, dessen C_2 -Symmetrieachse kristallographisch bedingt ist: durch die Symmetrieachse werden die insgesamt acht 'Butylgruppen paarweise äquivalent, sodaß im ¹H-NMR-Spektrum nur vier 'Butylsignale auftreten.

Besser zu erkennen ist der Bau des Moleküls bei Betrachtung nur einer Molekülhälfte (Fig. 3). Hier ist deutlich zu sehen, daß das Ru-Zentrum oberhalb der Pyramidengrundfläche angeordnet ist und beide Benzolringe aus dieser Ebene nach unten abgeknickt sind. Abstände und Winkel weisen keine Anomalien auf (Tab. 2) Die Ru-S-Abstände innerhalb einer [Ru(^{bu}bmae)]-Einheit (226.6(2) pm/226.3(2) pm) sind 11 pm kürzer als im verwandten [Ru(PPh₃)₂(bmae)] (237.5(2)/237.1(3) pm) [9], oder vergleichbaren Ru-dttd-Komplexen; auch die Ru-S-Brückenbindungen sind kürzer als in diesen Komplexen mit sechsfach koordinierten Ru-Zentren.

Fig. 2. Schematische Struktur von [Ru(^{bu}bmae)]₂ (ohne H-Atome).

Fig. 3. Struktur einer Molekülhälfte von [Ru(^{bu}bmae)]₂ (ohne H-Atome).

Tabelle 2 Ausgewählte Bindungsabstände (pm) und Winkel (°) von [Ru(^{bu}bmae)]₂

Ru-S(1)	226.6(2)	S(2)-Ru-S(1)	99.6(1)	
Ru-S(2)	226.3(2)	N(1)-Ru-S(1)	83.6(2)	
Ru-N(1)	195.0(7)	N(1)-Ru-S(2)	157.2(2)	
Ru-N(2)	195.5(6)	N(2)-Ru-S(1)	145.2(2)	
Ru-Rua	273.5(1)	N(2)-Ru-S(2)	82.5(2)	
Ru-S(1a)	231.6(2)	N(2)-Ru-N(1)	82.4(3)	
S(1)-C(10)	176.8(8)	C(10)-S(1)-Ru	100.6(3)	
S(2)-C(20)	172.8(9)	C(1)-N(1)-Ru	113.6(5)	
N(1)-C(1)	148.2(10)	C(11)-N(1)-Ru	124.1(5)	
N(1)-C(11)	137.1(10)	C(11)-N(1)-C(1)	121.4(7)	
N(2)-C(2)	146.8(10)	C(10)-C(11)-N(1)	116.4(7)	
N(2)-C(21)	138.0(10)	C(15)-C(10)-S(1)	124.3(6)	
C(1)-C(2)	152.8(12)	C(11)-C(10)-S(1)	115.0(6)	
		S(1)-Ru-S(1a)	106.6(1)	

Es liegt nahe, die vergleichsweise kurzen Ru-S-Abstände in 5 auf die Fünffachkoordination der Ru-Zentren und π -Donatoreffekte der S-Liganden zurückzuführen: Die Elektronenlücke der formal nur 16e⁻-konfigurierten Ru-Zentren wird durch π -Wechselwirkung mit den *p*-Elektronenpaaren der S-Atome stabilisiert. Hervorzuheben ist, daß abweichend von anderen bisher röntgenographisch untersuchten dttd- und bmae-Komplexen der bmae-Ligand in 5 das Metall-Zentrum verzerrt-planar umgibt, und jedes Ru-Zentrum noch eine freie Koordinationsstelle aufweist.

Weitere UV-Photolysereaktionen von $[Ru(CO)_2(^{bu}bmae)]$ sowie $[Ru(CO)_2(bmae)]$

Wie die Isolierung von 5 zeigte, werden bei hinreichend langer Bestrahlungsdauer beide CO-Liganden aus 2 abgespalten. Um doch noch die Monocarbonylstufe [Ru(CO)(^{bu}bmae)] zu fassen, wurde 2 daher nach Gl. 3 nochmals bestrahlt, wobei die Lösung wie vorher mit einem schwachen N_2 -Strom gespült wurde, und sich

$$2 \xrightarrow{+ N_2/h\nu/3 h}_{-2CO/THF/10^{\circ}C} [Ru(CO)(^{bu}bmae)]_2$$
(3)
(6)

wieder die stetige Zunahme der $\nu(CO)$ -Banden bei 1955 und 1920 cm⁻¹ bei gleichzeitiger Abnahme der $\nu(CO)$ -Banden von 2 beobachten ließ. Diesmal wurde die Bestrahlung jedoch abgebrochen, als die $\nu(CO)$ -Banden von 2 und die $\nu(CO)$ -Banden bei 1955 und 1920 cm⁻¹ etwa gleiche Intensität erreicht hatten (Fig. 4); dies sollte die Abspaltung von CO aus der erwarteten Monocarbonylspezies unter Bildung von 5 verhindern.

Die Aufarbeitung der Lösung ergab neben unumgesetztem 2 jetzt eine Monocarbonylspezies. Sie erwies sich jedoch nicht als das angestrebte [Ru(CO)(^{bu}bmae)] oder [Ru(CO)(THF)(^{bu}bmae)], sondern als der Zweikernkomplex [Ru(CO)-(^{bu}bmae)]₂ (6). 6 bildet orange, in CH₂Cl₂, CHCl₃, THF und DMSO gut lösliche Kristalle, und weist im KBr-IR-Spektrum eine intensive ν (CO)-Bande bei 1915 cm⁻¹ sowie zwei ν (NH)-Banden bei 3230 und 3310 cm⁻¹ auf. Sowohl die vier Singuletts der 'Butylgruppen im ¹H-NMR-Spektrum als auch die zwölf Signale der aromatischen Kohlenstoffatome im ¹³C-{¹H}-NMR-Spektrum weisen darauf hin, daß 6 die gleiche Gerüststruktur wie 5 besitzt, nunmehr aber die jeweils sechste Koordinationsstelle an den Ru-Zentren durch CO besetzt ist. Diese Annahme wird durch den im EI-Massenspektrum beobachteten Peak bei m/e = 1200 für 5 und den Molpeak von 6 bei m/e = 1256 erhärtet. Ungeklärt blieb also bislang die Herkunft

Fig. 4. v(CO)-Bereich des IR-Spektrums von 2 in THF nach 180 min Bestrahlung.

der ν (CO)-Banden bei 1955 bzw. 1940 cm⁻¹ in den Bestrahlungslösungen. Möglicherweise stammen sie von dem koordinativ ungesättigten [Ru(CO)(^{bu}bmae)], das anschließend zu 6 dimerisiert, einem zweikernigen Monocarbonylkomplex wie [Ru₂(CO)(^{bu}bmae)₂], oder aber dem photochemisch gebildeten *trans*-Isomer von [Ru(CO)₂(^{bu}bmae)]. Ein THF-Komplexes wie [Ru(CO)(THF)(^{bu}bmae)] sollte demgegenüber eine ähnliche ν (CO)-Frequenz wie die unten beschriebenen NH₃- und N₂H₄-Komplexe aufweisen; diese Komplexe sind labil und spalten die σ -Liganden NH₃ bzw. N₂H₄ leicht ab. Mit anderen Liganden wie Phosphinen, Kohlenmonoxid und Halogeniden sind Komplexe mit fünffach koordinierten Ru-Zentren wohl bekannt [13].

 $[Ru(CO)(NH_3)(^{bu}bmae)]$ (7) wurde nach Gl. 4 in weißen bis hellgelben Kristallen erhalten. 7 weist die gleichen Lösungseigenschaften wie 6 auf und verfärbt sich innerhalb von Tagen langsam nach grünbraun.

Bei der Reaktion der analogen bmae-Verbindung 1 wurden gemäß Gl. 5 gleichzeitig $[Ru(CO)(NH_3)(bmae)]$ (8) und das zu 6 analoge $[Ru(CO)(bmae)]_2$ (9) erhalten.

$$1 \xrightarrow{+ \mathrm{NH}_3/h\nu/3 \mathrm{h}}_{-\mathrm{CO/THF}/10^{\circ}\mathrm{C}} [\mathrm{Ru}(\mathrm{CO})(\mathrm{NH}_3)(\mathrm{bmae})] + [\mathrm{Ru}(\mathrm{CO})(\mathrm{bmae})]_2$$
(5)
(8) (9)

8 spaltet leicht NH₃ ab und geht dabei in 9 über, das nur noch in DMF mäßig löslich ist und im FD-Massenspektrum neben den Fragmentionen $[Ru(bmae)]_2$ und [9 - CO] einen Molpeak bei m/e = 808 aufweist.

 $[Ru(CO)(N_2H_4)(bmae)]$ (10) wurde nach Gl. 6 erhalten. 10 ist gleichfalls labil und wandelt sich unter Abspaltung von N_2H_4 leicht in 9 um.

Schließlich haben wir noch die UV-Photolyse von 1 in Gegenwart von NO-Gas untersucht [14]. Dabei färbt sich die gelbe Lösung rotbraun, die zwei ν (CO)-Banden von 1 nehmen ab, gleichzeitig taucht eine breite Bande bei 1800 cm⁻¹ auf, und ein schwerlöslicher rotbrauner Niederschlag (Gl. 7) fällt aus. Es wurde als das zweiker-

Fig. 5. Strukturvorschlag für [Ru(NO)(bmae)]₂.

nige [Ru(NO)(bmae)]₂ (11) identifiziert.

$$1 \xrightarrow{+\text{NO}/h\nu/2 \text{ h}}_{-\text{CO/THF}/10^{\circ}\text{C}} [\text{Ru(NO)(bmae)}]_{2}$$
(7)
(11)

11 weist ein ähnliches ¹³C{¹H}-NMR-Spektrum wie 6 auf, und im FD-Massenspektrum läßt sich bei m/e = 812 das M^+ -Ion beobachten. 11 ist paramagnetisch und besitzt bei 297 K ein $\mu_{eff} = 1.69$ BM. Für das niedrige μ_{eff} ist möglicherweise eine antiferromagnetische Kopplung der beiden Ru-Zentren verantwortlich. Im Gegensatz dazu werden z.B. für das 17e⁻-konfigurierte einkernige [Fe(NO)(bmae)] $(\mu_{eff} = 1.71 \text{ BM})$ [10] oder das 19e⁻-konfigurierte [Fe(NO)('N_HS₄')] ('N_HS₄'²⁻ = 1,5-Bis(2-(2-mercaptophenylthio)ethyl)-amin(-2)) ($\mu_{eff} = 2.13$ BM) [15] die für jeweils ein ungepaartes Elektron erwarteten Momente beobachtet [16]. 11 besitzt vermutlich die gleiche Gerüststruktur wie 5, wobei die sechste Koordinationsstelle an dem Ru-Zentrum jetzt durch NO besetzt ist (Fig. 5).

Resümee

Die Untersuchungen zeigen, daß bei der Photolyse von $[Ru(CO)_2(L)]$ (L = bmae bzw. ^{bu}bmae) primär die koordinativ ungesättigten [Ru(CO)(L)]-Spezies entstehen. Sie können gemäß Schema 1 dimerisieren, unter weiterer vollständiger CO-Abspaltung dimerisieren, oder σ - bzw. σ - π -Liganden anlagern. Im Falle der Reaktion nach Gl. 7 läßt sich die koordinativ ungesättigte Zwischenstufe nicht beobachten, da sie offensichtlich außerordentlich rasch mit NO unter CO-Abspaltung weiterreagiert. Da ohne UV-Bestrahlung keine Reaktion mit NO zu beobachten ist, muß eine solche Zwischenstufe intermediär jedoch auch hier auftreten.

Schema 1. Photolytische Abspaltung von CO und Weiterreaktion der intermediär gebildeten Zwischenstufe ($L = bmae^{2-}$, $b^u bmae^{2-}$; R = H, t-bu).

Experimenteller Teil

Allgemeines

Alle Reaktionen wurden unter Stickstoff in absolutierten Lösungsmitteln in Schlenkgefäßen durchgeführt und soweit möglich IR-spektroskopisch verfolgt; Lösungsmittelabsorptionen wurden dabei kompensiert. Die Spektren wurden auf folgenden Geräten aufgenommen: Zeiss-IR-Spektrometer IMR 16, JEOL FT-NMR-Spektrometer JNM-GX 270, JEOL NMR-Spektrometer JM PMX 60, Varian MAT 212 Massenspektrometer. Die UV-Bestrahlungen wurden mit 500 W sowie 150 W Hg-Lampen der Fa. Hanau durchgeführt. Magnetische Momente wurden mit einer Johnson Matthey Suszeptibilitätswaage durchgeführt und sind unkorrigiert.

Die Ausgangsverbindungen bmae- H_2 [17], ^{bu}bmae- H_2 [11], [Ru(CO)₂(bmae)] [9] und [Ru(CO)₂(^{bu}bmae)] [11] wurden nach loc. cit. dargestellt; N₂H₄ wurde aus N₂H₅OH (Fluka) durch Destillation über KOH bei reduziertem Druck erhalten.

Röntgenstrukturanalyse von [Ru(^{bu}bmae)]₂

Geeignete Einkristalle von $[Ru(^{bu}bmae)]_2$ wurden aus einer gesättigten MeOH-Lösung beim Abkühlen von +20 auf -30°C erhalten. Ein Kristall ($0.5 \times 0.2 \times 0.1$ mm³) wurde in einer Glaskapillare eingeschmolzen und bei 293 K auf einem Nicolet-R3M/V-Diffraktometer vermessen. Die Strukturlösung erfolgte mit direkten Methoden (SHELXS-86) mit anisotroper Verfeinerung der Nichtwasserstoffatome. Die Lagen der Phenylwasserstoffatome wurden für ideale Geometrie berechnet und bei der Verfeinerung festgehalten. Die Wasserstoffatome der Methyl- und Methylengruppen wurde für ideale Tetraeder berechnet und während der Verfeinerung um ihr Zentral-C-Atom herumgedreht, unter Annahme eines gemeinsamen Temperaturfaktors für isotrope Wasserstoffatome (weitere Angaben zur Strukturbestimmung sowie die Atomkoordinaten sind in Tab. 3 und Tab. 4 aufgeführt [18].

Synthesen

$[Ru(CO)(PPh_3)(^{bu}bmae)]$ (3) und $[Ru(PPh_3)_2(^{bu}bmae)]$ (4)

Eine Lösung von 500 mg (0.76 mmol) 2 in 350 ml THF wird mit 1 g (3.8 mmol) PPh₃ versetzt und unter gleichzeitigem Durchleiten von N₂ mit einer 500 W UV-Lampe bei 10°C bestrahlt, bis die ν (CO)-Banden von 2 vollständig verschwunden sind (ca. 80 min). Nach Abkondensieren des THF wird der Rückstand in MeOH aufgenommen; das unlösliche 3 wird abfiltriert, durch Auswaschen mit Et₂O von anhaftendem PPh₃ gereinigt und aus CH₂Cl₂ durch Überschichten mit Et₂O (+20 \rightarrow -30°C) umkristallisiert. Das MeOH-Filtrat wird zur Trockne gebracht. Umkristallisation des Rückstands aus CH₂Cl₂ durch Überschichten mit MeOH ergibt 4 in gelben, nadelförmigen Kristallen. Ausbeuten: 220 mg 3 (33%). Elementaranalyse: Gef.: C, 65.48; H, 6.78; N, 2.52. C₄₉H₆₁N₂S₂OPRu (890.20) ber.: C, 66.11; H, 6.91; N, 3.15%. 110 mg 4 (19%). Elementaranalyse: Gef.: C, 70.64; H, 7.30; N, 1.95. C₆₆H₇₆N₂S₂P₂Ru (1124.49) ber.: C, 70.50; H, 6.81; N, 2.49%.

$[Ru(^{bu}bmae)]_2$ (5)

Eine Lösung von 950 mg (1.45 mmol) 2 in 350 ml THF wird unter gleichzeitigem Durchleiten von N_2 mit einer 150 W UV-Lampe bei 10°C bestrahlt bis die $\nu(CO)$ -Banden von 2 verschwunden sind (ca. 6 h). Anschließend wird das THF

Kristallographische	Daten	und	Angahen	7111	Strukturbestimmung
Kitstanographische	Daten	una	Augaven	244	Suuktaivesiiniinaina

Tabelle 3

Formel $C_{60}H_{92}N_4S_4Ru_2$ M_r 1199.80 Raumgruppe $C2/c$ Kristallsystem monoklin Elementarzelle Zelldimensionen a (pm) 2739.1(7) b (pm) 1469.1(5) c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm ³) $6811(4) \times 10^6$ μ (cm ⁻¹) 5.33 $d_{ber.}$ (g/cm^3) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo- $K_a/Graphitmonochr.$ Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Geschw. $2-15^{\circ}/min$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe 10508 Unabh. Reflexe 7434 Beobachtete Reflexe 4202 Absorptionskorr. keine $e-Kriterium F_0 > 6.0\sigma(F) Programm SHELXS-86 Wichtung keine (W = 1) LS Parameter 377 R_w 0.050 <$	Verbindung	[Ru(^{bu} bmae)] ₂	
M_r 109.80 Raumgruppe C2/c Kristallsystem monoklin Elementarzelle Zelldimensionen a (pm) 2739.1(7) b (pm) 1469.1(5) c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm ³) 6811(4) × 10 ⁶ μ (cm ⁻¹) 5.33 $d_{ber.}$ (g/cm ³) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo-K $_{\alpha}$ /Graphitmonochr. Krist. Dimensionen 0.5 × 0.2 × 0.1 mm ³ Scan-Technik ω Scan-Gesebw. 2-15 °/min Winkelbereich 4° < 20 < 54°	Formel	Cen Hor NA SA Ruz	
Raumgruppe $C2/c$ KristallsystemmonoklinElementarzelle Z Zelldimensionen $2739.1(7)$ a (pm) $2739.1(7)$ b (pm)1469.1(5) c (pm)1821.7(6) β (°)111.70(3) Z 4 Volumen (pm³) $6811(4) \times 10^6$ μ (cm ⁻¹)5.33 d_{ber} (g/cm³)1.17DiffraktometerNicolet-R3M/VMeßtemperatur293 KStrahlung $Mo-K_{\alpha}/Graphitmonochr.$ Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Geschw. $2 - 15^{\circ}$ /minWinkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0\sigma(F)$ ProgrammSHELXS-86Wicklungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	М.	1199.80	
Kristallsystem monoklin Elementarzelle Zelldimensionen a (pm) 2739.1(7) b (pm) 1469.1(5) c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm ³) 6811(4)×10 ⁶ ϕ_{ber} (g_c /cm ³) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo- K_{α} /Graphitmonochr. Krist. Dimensionen 0.5×0.2×0.1 mm ³ Scan-Technik ω Scan-Geschw. 2–15°/min Winkelbereich 4° < 2 θ < 54°	Raumgruppe	C2/c	
Elementarzelle Zelldimensionen a (pm) 2739.1(7) b (pm) 1469.1(5) c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm³) 6811(4) × 10 ⁶ μ (cm ⁻¹) 5.33 d_{ber} (g/cm³) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo- K_{α} /Graphitmonochr. Krist. Dimensionen 0.5 × 0.2 × 0.1 mm³ Scan-Technik ω Scan-Geschw. 2-15°/min Winkelbereich 4° < 2 θ < 54°	Kristallsystem	monoklin	
Zelldimensionen a (pm) 2739.1(7) b (pm) 1469.1(5) c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm³) 6811(4)×10 ⁶ μ (cm ⁻¹) 5.33 d_{ber} (g/cm³) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo-K _a /Graphitmonochr. Krist. Dimensionen 0.5×0.2×0.1 mm³ Scan-Technik ω Scan-Geschw. 2-15°/min Winkelbereich 4° < 20 < 54°	Elementarzelle		
a (pm) 2739.1(7) b (pm) 1469.1(5) c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm³) 6811(4)×10 ⁶ μ (cm ⁻¹) 5.33 $\Delta_{ber.}$ (g/cm^3) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo- $K_a/Graphitmonochr.$ Krist. Dimensionen 0.5 × 0.2 × 0.1 mm³ Scan-Technik ω Scan-Geschw. 2-15 °/min Winkelbereich 4° < 20 < 54 °	Zelldimensionen		
b (pm) 1469.1(5) c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm ³) 6811(4)×10 ⁶ μ (cm ⁻¹) 5.33 d_{ber} (g/cm ³) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo-K _a /Graphitmonochr. Krist. Dimensionen 0.5×0.2×0.1 mm ³ Scan-Technik ω Scan-Geschw. 2-15°/min Winkelbereich 4° < 20 < 54°	<i>a</i> (pm)	2739.1(7)	
c (pm) 1821.7(6) β (°) 111.70(3) Z 4 Volumen (pm ³) 6811(4)×10 ⁶ μ (cm ⁻¹) 5.33 d_{ber} , (g/cm ³) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo- K_a /Graphitmonochr. Krist. Dimensionen 0.5×0.2×0.1 mm ³ Scan-Technik ω Scan-Geschw. 2-15°/min Winkelbereich 4° < 2 θ < 54°	<i>b</i> (pm)	1469.1(5)	
β (°) 111.70(3) Z 4 Volumen (pm ³) $6811(4) \times 10^6$ μ (cm ⁻¹) 5.33 d_{ber} (g/cm ³) 1.17 Diffraktometer Nicolet-R3M/V Meßtemperatur 293 K Strahlung Mo- K_{α} /Graphitmonochr. Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^\circ$ /min Winkelbereich 4° < 20 < 54°	<i>c</i> (pm)	1821.7(6)	
Z4Volumen (pm3) $6811(4) \times 10^6$ μ (cm ⁻¹) 5.33 d_{ber} . (g/cm3) 1.17 DiffraktometerNicolet-R3M/VMeßtemperatur293 KStrahlungMo- K_a /Graphitmonochr.Krist. Dimensionen $0.5 \times 0.2 \times 0.1$ mm3Scan-Technik ω Scan-Geschw. $2-15^{\circ}$ /minWinkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine (W = 1)LS Parameter 377 R 0.050	β(°)	111.70(3)	
Volumen (pm^3) $6811(4) \times 10^6$ μ (cm^{-1}) 5.33 $d_{ber.}$ (g/cm^3) 1.17 DiffraktometerNicolet-R3M/VMeßtemperatur293 KStrahlung $Mo-K_{\sigma}$ /Graphitmonochr.Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^{\circ}/min$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	Z	4	
μ (cm ⁻¹)5.33 $d_{ber.}$ (g/cm ³)1.17DiffraktometerNicolet-R3M/VMeßtemperatur293 KStrahlungMo- K_{α} /Graphitmonochr.Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^{\circ}/\text{min}$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	Volumen (pm ³)	$6811(4) \times 10^{6}$	
$d_{ber.}$ (g/cm ³)1.17DiffraktometerNicolet-R3M/VMeßtemperatur293 KStrahlungMo- K_{α} /Graphitmonochr.Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^{\circ}$ /minWinkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0\sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	μ (cm ⁻¹)	5.33	
DiffraktometerNicolet-R3M/VMeßtemperatur293 KStrahlung $Mo-K_{\alpha}$ /Graphitmonochr.Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^{\circ}/\text{min}$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0\sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	$d_{\rm ber}$ (g/cm ³)	1.17	
Meßtemperatur293 KStrahlung $Mo-K_{\alpha}$ /Graphitmonochr.Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^{\circ}/\text{min}$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W=1$)LS Parameter377 R 0.050 R_w 0.050	Diffraktometer	Nicolet-R3M/V	
StrahlungMo- K_a /Graphitmonochr.Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^{\circ}/\text{min}$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	Meßtemperatur	293 K	
Krist. Dimensionen $0.5 \times 0.2 \times 0.1 \text{ mm}^3$ Scan-Technik ω Scan-Geschw. $2-15^{\circ}/\text{min}$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	Strahlung	Mo- K_a /Graphitmonochr.	
Scan-Technik ω Scan-Geschw. $2-15^{\circ}$ /minWinkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	Krist. Dimensionen	$0.5 \times 0.2 \times 0.1 \text{ mm}^3$	
Scan-Geschw. $2-15^{\circ}/\min$ Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	Scan-Technik	ω	
Winkelbereich $4^{\circ} < 2\theta < 54^{\circ}$ Gemessene Reflexe10508Unabh. Reflexe7434Beobachtete Reflexe4202Absorptionskorr.keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377 R 0.050 R_w 0.050	Scan-Geschw.	2-15°/min	
Gemessene Reflexe 10508 Unabh. Reflexe 7434 Beobachtete Reflexe 4202 Absorptionskorr. keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ Programm SHELXS-86 Wichtung keine ($W = 1$) LS Parameter 377 R 0.050 R_w 0.050	Winkelbereich	4° < 20 < 54°	
Unabh. Reflexe 7434 Beobachtete Reflexe 4202 Absorptionskorr. keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ Programm SHELXS-86 Wichtung keine ($W = 1$) LS Parameter 377 R 0.050 R_w 0.050	Gemessene Reflexe	10508	
Beobachtete Reflexe 4202 Absorptionskorr. keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ Programm SHELXS-86 Wichtung keine ($W = 1$) LS Parameter 377 R 0.050 R_w 0.050	Unabh. Reflexe	7434	
Absorptionskorr. keine σ -Kriterium $F_0 > 6.0 \sigma(F)$ Programm SHELXS-86 Wichtung keine ($W = 1$) LS Parameter 377 R 0.050 R_w 0.050	Beobachtete Reflexe	4202	
σ -Kriterium $F_0 > 6.0 \sigma(F)$ Programm SHELXS-86 Wichtung keine ($W = 1$) LS Parameter 377 R 0.050 R_w 0.050	Absorptionskorr.	keine	
ProgrammSHELXS-86Wichtungkeine ($W = 1$)LS Parameter377R0.050 R_w 0.050	σ-Kriterium	$F_0 > 6.0\sigma(F)$	
Wichtung keine $(W = 1)$ LS Parameter 377 R 0.050 R_w 0.050	Programm	SHELXS-86	
LS Parameter 377 <i>R</i> 0.050 <i>R</i> 0.050	Wichtung	keine $(W=1)$	
R 0.050 Rw 0.050	LS Parameter	377	
R _w 0.050	R	0.050	
	R _w	0.050	

abkondensiert, der Rückstand in MeOH aufgenommen und auf -30 °C gekühlt. Die ausgefallenen schwarzen Kristalle werden abfiltriert und im HV getrocknet. Ausbeute: 110 mg 5 (13%). Elementaranalyse: Gef.: C, 58.89; H, 7.86; N, 3.91. C₆₀H₉₂N₄S₄Ru₂ (1199,80) ber.: C, 60.06; H, 7.73; N, 4.64%.

$[Ru(CO)(^{bu}bmae)]_2$ (6)

1.6 g (2.4 mmol) 2 werden in 350 ml THF gelöst und bei gleichzeitigem Durchleiten eines schwachen N₂-Stroms mit einer 150 W UV-Lampe bei 10°C bestrahlt, bis die Intensität der ν (CO)-Banden ungefähr 1/1 beträgt (ca. 8 h). Anschließend wird das THF abkondensiert, der Rückstand mit MeOH gewaschen und aus CH₂Cl₂ durch Überschichten mit MeOH (+20 \rightarrow -30°C) kristallisiert. Die ausfallenden orangen Kristalle werden abgetrennt, mit MeOH gewaschen und im HV getrocknet. Ausbeute 350 mg 6 (23%). Elementaranalyse: Gef.: C, 59.64; H, 8.27; N, 4.12. C₆₂H₉₂N₄S₄O₂Ru₂ ber.: (1255.82): C, 59.30; H, 7.38; N, 4.46%. ¹³C{¹H}-NMR in CDCl₃ (ppm rel. TMS): 29.90; 31.61; 31.95; 32.15 (C-Me₃),

172		
Tabelle 4		

				, . .	
Atom	x	у	Z	U(eq) ^a	
Ru	4508(1)	693(1)	7529(1)	31(1)	
S(1)	5276(1)	634(2)	8585(1)	35(1)	
S(2)	4316(1)	2187(2)	7562(2)	42(1)	
N(1)	4486(2)	- 608(5)	7726(4)	31(2)	
N(2)	3745(3)	568(5)	7171(4)	34(3)	
C(1)	3984(3)	-1046(6)	7235(6)	37(3)	
C(2)	3541(3)	- 363(6)	7114(6)	35(3)	
C(15)	5644(3)	- 900(6)	9566(5)	36(3)	
C(14)	5588(4)	-1826(7)	9689(6)	46(4)	
C(13)	5199(4)	- 2380(6)	9146(6)	42(4)	
C(12)	4841(3)	- 1997(6)	8486(5)	37(3)	
C(11)	4853(3)	- 1058(6)	8345(5)	30(3)	
C(10)	5276(3)	- 518(5)	8867(5)	32(3)	
C(30)	5187(5)	- 3385(7)	9353(7)	64(5)	
C(31)	4973(6)	- 3445(11)	10036(9)	110(9)	
C(32)	4799(6)	- 3925(8)	8668(9)	111(8)	
C(33)	5726(5)	- 3819(9)	9612(12)	110(9)	
C(35)	6081(3)	- 345(7)	10192(6)	43(3)	
C(36)	6462(4)	21(8)	9836(6)	53(4)	
C(37)	5842(4)	430(8)	10508(6)	56(4)	
C(38)	6387(4)	- 933(8)	10907(6)	62(5)	
C(25)	3307(4)	2955(6)	6926(6)	44(4)	
C(24)	2763(4)	2811(7)	6563(6)	51(4)	
C(23)	2530(3)	1950(7)	6406(6)	41(3)	
C(22)	2847(3)	1196(6)	6603(6)	38(3)	
C(21)	3408(3)	1303(6)	6958(5)	33(3)	
C(20)	3639(3)	2172(6)	7114(5)	37(3)	
C(40)	1932(4)	1884(7)	6007(7)	52(4)	
C(41)	1749(4)	907(9)	5842(9)	84(6)	
C(42)	1758(5)	2387(9)	5220(8)	77(6)	
C(43)	1685(5)	2325(12)	6525(10)	93(7)	
C(45)	3527(4)	393 4(7)	7109(8)	63(5)	
C(46)	3080(6)	4649(8)	6838(11)	105(8)	
C(47)	3908(5)	4153(9)	6694(9)	82(6)	
C(48)	3791(5)	4043(8)	8011(8)	86(7)	

Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Thermalparameter (pm² $\times 10^{-1}$) von [Ru(^{bu}bmae)]₂

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

34.83; 35.51; 37.76; 37.84 (C-Me₃), 47.42; 60.50 (C_2H_4), 118.36; 118.56; 121.20; 122.91; 143.04; 144.31; 147.15; 147.96; 149.24; 149.97; 150.08 (C₆H₂), 205.23 (CO).

$[Ru(CO)(NH_3)(^{bu}bmae)]$ (7)

1 g (1.52 mmol) 2 werden in 350 ml THF gelöst und unter gleichzeitigem Durchleiten eines schwachen NH₃-Gasstroms mit einer 150 W UV-Lampe bestrahlt bis nur noch eine $\nu(CO)$ -Bande bei 1910 cm⁻¹ im Lösungs-IR-Spektrum erkennbar ist (ca. 3 h). Die intensiv rotbraune Lösung wird zur Trockne gebracht, der Rückstand mitMeOH aufgenommen und aus CH₂Cl₂ durch Überschichten mit MeOH (+20 \rightarrow -30 °C) kristallisiert. Die ausfallenden hellgelben Kristalle werden abgetrennt, mit MeOH gewaschen und im HV getrocknet. Ausbeute 150 mg 7

$[Ru(CO)(NH_3)(bmae)]$ (8) und $[Ru(CO)(bmae)]_2$ (9)

600 mg (1.40 mmol) 1 werden in 350 ml THF gelöst und unter gleichzeitigem Durchleiten von gasförmigen NH₃ mit einer 150 W UV-Lampe bei 10 °C bestrahlt. Die Lösung wird anschließend filtriert, auf ca. 50 ml eingeengt und auf -30 °C gekühlt. Der ausgefallene Niederschlag von 8 und 9 wird abfiltriert, mit MeOH gewaschen und getrocknet. 8 wird aus dem Niederschlag mit CH₂Cl₂ herausgelöst und durch Abkondensieren des Lösungsmittels in reiner Form erhalten. Das in CH₂Cl₂ unlösliche 9 wird aus DMF durch Überschichten mit MeOH bei RT kristallisiert. Ausbeute 150 mg 8 (26%). Elementaranalyse: Gef.: C, 42.56; H, 4.09; N, 8.32. C₁₅H₁₇N₃S₂ORu (420.51) ber.: C, 42.84; H, 4.07; N, 9.99%. Ausbeute 200 mg 9 · DMF (35.6%). Elementaranalyse: Gef.: C, 45.09; H, 3.79; N, 7.75. C₃₀H₂₈N₄S₄O₂Ru₂ (806.96) · DMF ber.: C, 45.04; H, 4.01; N, 7.96%. ¹³C{¹H}-NMR von 9 in DMF-d₇ (ppm rel. TMS): 46.29; 61.95 (C₂H₄), 121.15; 123.46; 124.73; 125.53; 126.20; 126.61; 129.76; 132.01; 148.55; 149.18; 150.93; 152.70 (C₆H₄), 205.81 (CO).

$[Ru(CO)(N_2H_4)(bmae)]$ (10)

500 mg (1.16 mmol) 1 werden in 150 ml THF gelöst, mit 37 mg (1.16 mmol) N_2H_4 versetzt und mit einer 150 W UV-Lampe bei gleichzeitigem Durchleiten eines schwachen N_2 -Stroms bestrahlt. Der dabei ausgefallene Niederschlag wird abfiltriert, mit THF und MeOH gewaschen und im HV getrocknet. Ausbeute 320 mg 10 (63%). Elementaranalyse: Gef.: C, 39.63; H, 4.02; N, 11.31. $C_{15}H_{18}N_4S_2ORu$ (435.53) ber.: C, 41.36; H, 4.17; N, 12.86%.

$[Ru(NO)(bmae)]_{2} \cdot 2 THF (11)$

1 g (2.32 mmol) 1 werden in 350 ml THF gelöst und unter gleichzeitigem Durchleiten von NO mit einer 150 W UV-Lampe bei 10 °C bestrahlt (ca. 2 h). Der ausgefallene rotbraune mikrokristalline Niederschlag wird abfiltriert, mit THF gewaschen und im HV getrocknet. Ausbeute: 620 mg, 11 · 2THF (56%). Elementaranalyse: Gef.: C, 45.49; H, 4.56; N, 8.52; S, 13.56. $C_{28}H_{28}N_6S_4O_2Ru_2$ (810.96) · 2THF ber.: C, 45.27; H, 4.64; N, 8.80; S, 13.43%. ¹³C{¹H}-NMR in DMF- d_7 (ppm rel. TMS): 48.70; 62.30 (C_2H_4), 26.00; 68.10 (THF), 112.3; 116.3; 123.4; 125.8; 127.6; 128.2; 128.6; 131.0; 133.2; 146.6; 148.4; 160.4 (C_6H_4).

Dank

Diese Untersuchungen wurden von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie sowie durch eine Spende $\operatorname{RuCl}_3 \cdot xH_2O$ der Fa. Degussa, Hanau unterstützt, wofür wir herzlich danken. Herrn Dr. Moll danken wir für die NMR-spektroskopischen Messungen.

Literatur

1 XLII. Mitteilung: D. Sellmann, G. Pöhlmann, F. Knoch und M. Moll, Z. Naturforsch., im Druck.

² T.G. Spiro (Hrsg.), Iron Sulfur Proteins, Metal Ions in Biology, Vol. 4, John Wiley and Sons, New York, 1982; (b) A. Müller und B. Krebs (Hrsg.), Sulfur, its Significance for Chemistry, for the Geo.,

Bio- and Cosmosphere and Technology, Studies in Inorganic Chemistry, Vol. 5, Elsevier Science Publishers, B.V., Amsterdam, 1984; (c) T.G. Spiro (Hrsg.), Molybdenum Enzymes, Metal Ions in Biology, Vol. 7, John Wiley and Sons, New York, 1985.

- 3 S.D. Conradson, B.K. Burgess, W.E. Newton, K.O. Hodgson, J.W. McDonald, J.F. Rubinson, S.F. Gheller, L.E. Mortenson, M.W.W. Adams, P.K. Mascharak, W.A. Armstrong und R.H. Holm, J. Am. Chem. Soc., 107 (1985) 7935.
- 4 D. Sellmann, E. Böhlen, M. Waeber, G. Huttner und L. Zsolnai, Angew. Chem., 97 (1985) 984; Angew. Chem. Int. Ed. Engl., 24 (1985) 981.
- 5 D. Sellmann, W. Ludwig, G. Huttner und L. Zsolnai, J. Organomet. Chem., 294 (1985) 199.
- 6 D. Sellmann, M. Waeber, G. Huttner und L. Zsolnai, Inorg. Chim. Acta, 118 (1986) 49.
- 7 D. Sellmann, J. Keller, M. Moll, H.P. Beck und W. Milius, Z. Naturforsch. B, 41 (1986) 1551.
- 8 D. Sellmann und W. Reißer, J. Organomet. Chem., 297 (1985) 319.
- 9 D. Sellmann, U. Reinecke, G. Huttner und L. Zsolnai, J. Organomet. Chem., 310 (1986) 83.
- 10 D. Sellmann und U. Reinecke, J. Organomet. Chem., 314 (1987) 91.
- 11 D. Sellmann und O. Käppler, Z. Naturforsch. B, 42 (1987) 1291.
- 12 D. Sellmann und O. Käppler, Angew. Chem., 100 (1988) 706; Angew. Chem. Int. Ed. Engl., 27 (1988) 689.
- (a) Vgl. dazu: W.R. Roper und L.J. Wright, J. Organomet. Chem., 142 (1977) C1.
 (b) P.B. Hitchcock, M.F. Lappert und P.L. Pye, J. Chem. Soc., Chem. Commun., (1977) 196.
 (c) D.F. Gill und B.L. Shaw, Inorg. Chim. Acta, 32 (1979) 19.
- 14 Vgl. dazu: M. Herberhold und A. Razavi, Angew. Chem., 84 (1972) 1150; Angew. Chem. Int. Ed. Engl., 11 (1972) 1092.
- 15 D. Sellmann und H. Kunstmann, Inorg. Chim. Acta, 154 (1988) 157.
- 16 Siehe auch: J.A.Mc Cleverty, N.M. Atherton, J. Locke, E.J. Wharton und C.J. Winscom, J. Am. Chem. Soc., 89 (1967) 6082.
- 17 J.L. Corbin und D.E. Work, Can. J. Chem., 52 (1974) 1054; s. auch Ref. 9.
- 18 Weitere Einzelheiten der Kristalluntersuchungen können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53389, der Autoren und des Zeitschriftenzitats angefordert werden.